6 research outputs found

    Acoustic scale from the angular power spectra of SDSS-III DR8 photometric luminous galaxies

    Get PDF
    We measure the acoustic scale from the angular power spectra of the Sloan Digital Sky Survey III (SDSS-III) Data Release 8 imaging catalog that includes 872,921 galaxies over ~ 10,000 deg^2 between 0.45<z<0.65. The extensive spectroscopic training set of the Baryon Oscillation Spectroscopic Survey (BOSS) luminous galaxies allows precise estimates of the true redshift distributions of galaxies in our imaging catalog. Utilizing the redshift distribution information, we build templates and fit to the power spectra of the data, which are measured in our companion paper, Ho et al. 2011, to derive the location of Baryon acoustic oscillations (BAO) while marginalizing over many free parameters to exclude nearly all of the non-BAO signal. We derive the ratio of the angular diameter distance to the sound horizon scale D_A/r_s= 9.212 + 0.416 -0.404 at z=0.54, and therefore, D_A= 1411+- 65 Mpc at z=0.54; the result is fairly independent of assumptions on the underlying cosmology. Our measurement of angular diameter distance D_A is 1.4 \sigma higher than what is expected for the concordance LCDM (Komatsu et al. 2011), in accordance to the trend of other spectroscopic BAO measurements for z >~ 0.35. We report constraints on cosmological parameters from our measurement in combination with the WMAP7 data and the previous spectroscopic BAO measurements of SDSS (Percival et al. 2010) and WiggleZ (Blake et al. 2011). We refer to our companion papers (Ho et al. 2011; de Putter et al. 2011) for investigations on information of the full power spectrum.Comment: 16 pages, 14 figures, 3 tables, submitted to Ap

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey : the low-redshift sample

    Get PDF
    We report on the small-scale (0.5 <r <40 h-1 Mpc)clustering of 78 895 massive (M* ˜ 1011.3M⊙) galaxies at 0.2 <z <0.4 from the first twoyears of data from the Baryon Oscillation Spectroscopic Survey (BOSS),to be released as part of Sloan Digital Sky Survey (SDSS) Data Release 9(DR9). We describe the sample selection, basic properties of thegalaxies and caveats for working with the data. We calculate the real-and redshift-space two-point correlation functions of these galaxies,fit these measurements using halo occupation distribution (HOD)modelling within dark matter cosmological simulations, and estimate theerrors using mock catalogues. These galaxies lie in massive haloes, witha mean halo mass of 5.2 × 1013 h-1M⊙, a large-scale bias of ˜2.0 and a satellitefraction of 12 ± 2 per cent. Thus, these galaxies occupy haloeswith average masses in between those of the higher redshift BOSS CMASSsample and the original SDSS I/II luminous red galaxy sample.We report on the small-scale (0.5 < r < 40 h−1 Mpc) clustering of 78 895 massive (M* ∼ 1011.3 M⊙) galaxies at 0.2 < z < 0.4 from the first two years of data from the Baryon Oscillation Spectroscopic Survey (BOSS), to be released as part of Sloan Digital Sky Survey (SDSS) Data Release 9 (DR9). We describe the sample selection, basic properties of the galaxies and caveats for working with the data. We calculate the real- and redshift-space two-point correlation functions of these galaxies, fit these measurements using halo occupation distribution (HOD) modelling within dark matter cosmological simulations, and estimate the errors using mock catalogues. These galaxies lie in massive haloes, with a mean halo mass of 5.2 × 1013 h−1 M⊙, a large-scale bias of ∼2.0 and a satellite fraction of 12 ± 2 per cent. Thus, these galaxies occupy haloes with average masses in between those of the higher redshift BOSS CMASS sample and the original SDSS I/II luminous red galaxy sample.Publisher PDFPeer reviewe
    corecore